Numerical Computation
Optimizing mathematical calculations.
Monte Carlo Simulation
import epochlyimport random@epochly.optimize(level=2)def monte_carlo_pi(iterations):inside = 0for _ in range(iterations):x = random.random()y = random.random()if x*x + y*y <= 1:inside += 1return 4 * inside / iterations# Estimate pi with 100 million iterationspi_estimate = monte_carlo_pi(100_000_000)print(f"Pi ≈ {pi_estimate}")
Rolling Statistics
import epochly@epochly.optimizedef rolling_mean(data, window):results = []for i in range(len(data) - window + 1):window_sum = 0for j in range(window):window_sum += data[i + j]results.append(window_sum / window)return results# 2M data points, window of 50result = rolling_mean(data, 50)# Faster with Epochly (Level 3 parallel or Level 4 GPU)